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An extended odd log-logistic-lindley distribution with
properties, applications and Bayesian estimation
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Abstract

This paper introduces a four-parameter extended odd log-logistic-Lindley distribution from
which moments, hazard, and quantile functions are then obtained. The statistical properties
of this distribution show the high flexibility of the proposed distribution. The maximum
likelihood and least-squares estimators of the extended odd log-logistic-Lindley parameters
are studied. Moreover, a simulation study is carried out for evaluating the performance of
the estimation methods, and the usefulness of the new distribution is illustrated using two
real data sets. Finally, Bayesian analysis and efficiency of Gibbs sampling are provided on
the basis of two real data sets.

Key words: Bayesian estimation, Gibbs sampling, Lindley distribution, moment, odd log-
logistic, simulation.

1. Introduction

Modelling and analysing real lifetime data are widely used in many applied fields such
as finance, reliability, engineering, medicine. In practice, researchers dealt with different
types of survival data and they proposed various lifetime models for modelling such data.
The statistical analysis depends on the procedure used by the researcher and the generated
family of distributions. Recently, new families of distributions have been introduced in
the literature that could considerably help to analyse complex real data. However, it is
necessary to find more efficient statistical models; since there are many real data sets in
practice that need to be investigated with statistical models that are more flexible. Therefore,
the researchers have had many attempts to extend distributions theory by adding new shape
parameters to different families of distribution to introduce new families. In particular,
some extended distributions demonstrate high flexibility in hazard rate function (hrf) such
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as increasing, decreasing and bathtub shapes even though the baseline hazard rate function
may not have these shapes.

Most of the new generators of G family can be obtained using T-X class, which is
proposed by Alzaatreh et al. (2013). For example, Kumaraswamy generated, odd log-
logistic-G, Exponentiated-G (Exp-G), gamma generated, proportional odds and generalized
beta generated. Recently, the extended exponentiated-G (EE-G) family was defined by
Alizadeh et al. (2018a).

In this paper, we introduce a new generator of G family using T-X class, which is called
the extended odd log-logistic-G (EOLL-G) family, and study some of its mathematical prop-
erties. The main idea of the EOLL-G family is based on a contribution presented by Gleaton
and Lynch (2010). They introduced an extended generalized log-logistic family for lifetime
distribution. Following their idea and using T-X class the cumulative distribution function
(cdf) of the EOLL-G family with parameters & > 0, 8 > 0 and y > 0 as three additional
shape parameters is defined by

G(x;0)%
FloE)= [ewol Y 4 G(x:6) , (1)
0 (I+7)?"  G(x:0)%+y[1—G(x;0))°

where G(x; 0) is the baseline cdf with the parameter vector 8 and & = (¢, 8,7, 0).

It is clear that in the special case, the EOLL-G family reduces to EE-G family when
B = 1. For a = y = 1, it transforms into Marshal-Olkin family. If f = 1 and o = 7, then it
reduces to Exp-G family. By considering & = f = ¥ = 1, we obtain the baseline distribution
G.

Gleaton and Lynch (2010) showed that the extended generalized log-logistic family has
appropriate performance for lifetime data. Therefore, we can use the EOLL-G family for
lifetime data by choosing a lifetime distribution as G(+) in (1). Although, there are several
lifetime distributions that we can use, which is due to the fact that the proposed family has
three parameters, it is better to select a lifetime distribution with only one parameter, for
example, exponential or Lindley. It should be noted that hrf of the exponential is constant
while the hrf of the Lindley distribution has different shapes as increasing, decreasing, uni-
modal and bathtub. Moreover, the Lindley distribution is a well-known distribution that is
employed widely in different fields such as lifetime and reliability, medical, finance, engi-
neering and insurance. These reasons motivate the use of this distribution for modeling real
lifetime data. Therefore, we consider the Lindley distribution as the baseline distribution in
this paper.

The Lindley distribution was originally proposed by Lindley (1958) in the Bayesian
statistical context. Some properties of this distribution such as moments, failure rate func-
tion, characteristic function, mean residual life function, mean deviations, Lorenz curve,
stochastic ordering, entropies, asymptotic distribution of the extreme order statistics have
been studied by Ghitany et al. (2008). The cdf of the Lindley distribution with scale param-
eter A > 01is

. _ Ax —Ax
G(.x,l)—l-(l‘i‘w)e ,)C>O7 (2)
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and its corresponding probability density function (pdf) is given by
12
1+2

g(xd) = (14x)e . 3)

Many authors have published various extensions of the Lindley distribution recently.
For example, a three-parameter generalization of the Lindley distribution proposed by Zak-
erzadeh and Dolati (2009), Nadarajah et al. (2011) defined a generalized Lindley distribu-
tion, a new generalized Lindley distribution based on the weighted mixture of two gamma
distributions was studied by Abouammoh et al. (2015), Asgharzadeh et al. (2016, 2018)
introduced a weighted Lindley distribution and Weibull Lindley distribution, respectively,
and Alizadeh et al. (2017a,b,2018b) proposed several generalizations of the Lindley dis-
tribution based on the odd log-logistic model. Given the vast amount of papers published
recently, we can only mention a few of the most recent contributions: Gomes-Silva et al.
(2017), Afify et al. (2019), Alizadeh et al. (2019) and Alizadeh et al. (2025).

In the present paper, we introduce a new generalization of the Lindley distribution using
the EOLL-G family. To this end, it is enough to choose the Lindley distribution as the
baseline G(x; ) in (1). By substituting (2) in (1), we get

(e ]
[1 — (1 Jrl%lx) e*}”‘}aw%/{(l + H%x) e*}“x]ﬁ

and its corresponding pdf is given by

Flxa,B,v,4) = ; x20, 4

YA?(1+x) (1+H%x)ﬁ‘lefmx [1_(1+H%x)e4x}“—l
(1+7L){[1(lJrli”lx)eAx]aer[(]Jrlile)e/lx]ﬁ}z

x{a+(ﬁ—a) {1—<1+lilx>e“”. (5)

A random variable X with pdf (5) has extended odd log-logistic-Lindley (EOLL-L)
distribution and is denoted by X ~ EOLL-L(«, 3,7,A). The EOLL-L distribution is more
flexible than the Lindley distribution and allows for greater flexibility of the tails.

Special cases: Let X ~ EOLL—L(a, f3,7,A).

f(x;a7ﬁ7’}/71) =

e If o = B,y =1, then EOLL-L reduces to the Odd Log-Logistic Lindley (OLL-L)
Ozel et al. (2017).

* For @ = f3, EOLL-L coincides with OLL-Marshall- Olkin Lindley (OLL-MOL) Al-
izadeh et al. (2017b).

» If a = B = 1, then XEOLL-L reduces to Marshall- Olkin Lindley (MOL).
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» By taking ¥ = 1, EOLL-L coincides with the new OLL-Lindley (NOLLL) Alizadeh
et al. (2018b).

» For ¢ = = y= 1, EOLL-L is ordinary Lindley.

The different shapes of the pdf such as unimodal, symmetric, skewed, and monotoni-
cally decreasing are shown in Figure 1 (left plot). As seen, the density of the EOLL-L model
can be right-skewed density with one peak and heavy tail to the right, right-skewed density
without a peak and with heavy tail to the right, bimodal and unimodal density with different
shapes.

The point that catches our attention in this graph is that, for gamma values greater than
1, the density curve is symmetrical, and for less than 1, it is skewed to the right, and also for
larger beta values, the tails of the distribution will become heavier.

The rest of the paper is organized as follows. In Section 2, some mathematical properties
of the EOLL-L distribution are obtained. Certain characterizations are presented in Section
3. The estimations of the unknown parameters based on different methods are investigated
in Section 4. A simulation study is reported in Section 5. In Section 6, the performance
and application of the EOLL-L distribution are evaluated using two real data sets. Bayesian
inference and Gibbs sampling procedure for the considered data sets are investigated in
Section 7. Finally, some conclusions are stated in Section 8.

2. Main properties

2.1. Hazard rate function

In reliability studies, the hrf is an important characteristic and fundamental to the design
of safe systems in a wide variety of applications. Using equations (4) and (5) the hrf of the
EOLL-L distribution takes the form

h(x; 0, B, 1) P24 [1= (14 ) e }

_ (1+l+/lx){[l—<1+%>ka] 1|14 ),M]ﬁ}
y {oc+([37a){17< 11/1)‘)“7“”- "

Plots for the hrfs for selected parameter values are displayed in Figure 1(right plot).
As seen in Figure 1, the hrf of the EOLL-L distribution has very flexible shapes such as
increasing, decreasing, upside-down, bathtub and upside-down-bathtub. It is evident that
the EOLL-L distribution is more flexible than the Lindley distribution, in other words, the
additional parameters & > 0,3 > 0 allow for a high degree of flexibility of the EOLL-L
distribution. This attractive flexibility implies that the hrf of the EOLL-L is useful for non-
monotone empirical hazard behaviour, which is more likely observed in real life situations.
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Figure 1. Plots of the density and hazard function for the EOLL-L distribution for selected
parameter values

2.2. Quantile function

Quantile function is generally used to find representations in terms of lookup tables
for key percentiles. Let X be an EOLL-L distributed random variable with parameters
a,B,A,y. The quantile function, Q(p), defined by F[Q(p)] = p is the root of the equation
as

(o)t

- . ()
=(rew) e (i) o]

p:

A closed form of quantile function is available when oc = 3. For this purpose, we define

(1+A)(1-p)a

[1+2+A0Q(p)]e *O) = ~—— T )
(yp)e+(1—p)e
for 0 < p < 1. After some simple algebraic manipulation one can obtain
11 —(14A)(1—p)ae -4
Q(p):_l_z_zwfl T T . (9)
(yp)e+(1-p)@

where W_;[.] is the negative branch of the Lambert function (Corless et al. 1996). Note that
the particular case of (9) for @ = 8 = y = 1 is derived by Jodr (2010).

Now, we propose the following algorithm for generating random data from the EOLL-L
distribution for the case a = .
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Algorithm 1 (Inverse cdf)
* Generate U; ~ Uniform(0,1), i=1,...,n;

e Set

—(1+A)(1-Uya ell] } -

1 1 , i=1,...,n.
(U)o + (1 -Uj)=

For a # B3, we applied the following algorithm for generating random data:

* Step 1. Generate random numbers u; from U ~ U(0,1) fori=1,--- ,n.

o Step 2. Select arbitrary values for parameters of EOLL-L distribution, i.e. o, B, ¥
and 1.

 Step 3. Solve numerically the non-linear equation

o
[1- 1+ £2)e )

1=+ Epe ]y Apein)”

u; =

; (10)

and compute values of x; fori=1,--- ,n.

2.3. Expansions for the density and cumulative distribution functions

In this subsection, two mixture representations of the pdf and cdf for EOLL-L are pro-
posed. Despite the fact that the pdf and cdf of EOLL-L require mathematical functions
that are widely available in modern statistical packages, frequently analytical and numerical
derivations take advantage of power series representations for the pdf. Therefore, we use
the concept of power series to calculate the useful expansions. Accordingly, the pdf of the
EOLL-L distribution is given by

1o (1 Mo vyl AR PEVE: ' (11)
1+4)°¢ 7,;0“" 1+4)°¢ ’
where a; = ¥, (— 1)k (j‘) (2) and

A —Ax ¢ A —Ax ﬁ_ o Ax —Ax ¢
{17(1+1+lx)e }+Y{<l+7l+lx>e } _kgbbk{lf(H—l_i_l)e },(12)

where by, = aj + y(—1)* (llz) . Then, we can write

F(x) = {1—<1+%)G*M}a k:iCk{li(le P )elx}kﬂz.
Yo bx {1— (1+1/%1> e*/bf} =0
13)
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where cg = blo and fork > 1,

=-b,! Zb Chr- (14)

r=1

Hence, the cdf of the EOLL-L distribution can be written as

F(x) = chGk-Hx(x)- (15)
k=0

where Gy o(x) denotes the cdf of the generalized Lindley (exponentiated Lindley) distribution with
parameters A and k + c.
Moreover, by differentiating from (15), the pdf of X can be expressed as

flx) = ick8k+a(x)~ (16)

k=0

where gt o (x) is the pdf of the generalized Lindley distribution with parameters A and & + a. Several
properties of the EOLL-L distribution can be available from the cdf and pdf expansions, given in (15)
and (16), respectively.

2.4. Moments and moment generating function

Some of the most important features and characteristics of a distribution can be investigated
through moments (e.g., central tendency, dispersion, skewness, and kurtosis). In what follows, we
present ordinary moments and the moment generating function (mgf) of the EOLL-L distribution. To
find the ordinary moments (i), we use the following equation, which is introduced by Nadarajah et
al. (2011) as

oo a—1
A(a,b,c,s):/o x(1+x) {17 (1+b]f])e—’”} e dx. (17)

From (17), we have

o | r+l lyr
a—1 r+1\ (=)' T(s+c+1)
b,c,8) = . 18
wred =220 ()0 s sren o
Using equations (15) and (16), we get the ordinary moments of the EOLL-L distribution as

: 2o

=E[X"|=—"—— A . 1

Wy =E[X] H,Lkgo(kw)ck (k+a,4,r2) (19)

We now provide a formula for the conditional moments of the EOLL-L distribution. To this end,
we use the following equation, which is introduced by Nadarajah et al. (2011) as

L(a,b,c,5,t):/ooxc(l+x) {17 (1+ bx )e_bx] e . (20)
t

b+1
Using the generalized binomial expansion, we have

wencso-EEE (V)

1=0r=05=0




8 A. Eftekharian et al.: An extended odd log-logistic-lindley distribution...

where
[(a,x) = / e ar, (22)
X
denotes the incomplete gamma function. From equations (16) and (21), we obtain the conditional
moments of the EOLL-L distribution as

2o
T2/

W) =EX"X >t = (k+ o) cp Lk+a,A,r,A,1). (23)
0

Moreover, the incomplete moments of the EOLL-L distribution can be obtained directly from
(23).
Using (16) and (18), we can derive the mgf as follows:
A

My(t) =E [etX} =17 Lkt o)eAlk+ 4,02 1),
k=0

Remark 1 The central moments (l,) and cumulants (K,) of X are easily calculated from (19) (e.g.
see Arellano-Valle et al., 2017, and Contreras-Reyes et al., 2021) as

C k(TN ik, / = n—1 /
LL,,IZ(-I) k Hy Ky and Kl’l::un_z k—1 Kie Hyp—kes

k=0 k=1
respectively, where ki = W|. Thus, ky = Wy — 1%, k3 = s —3uy ) +2up, etc.

From the ordinary moments and using (19) the mean, variance, skewness and kurtosis are calcu-
lated for different values of parameters in Table 1. From Table 1 it can be seen that skewness and
kurtosis are very sensitive to changes in the shape parameters so, the importance of the proposed
distribution can be concluded.

Table 1. Moments, skewness, and kurtosis of EOLL-L distribution for some parameters
values

o Y B A iy w T4 H Skewness Kurtosis
0.5 0.5 1.0 0.5 1.903213 9.702343 72.93571 707.2085 2.089507 53.199973
0.5 0.5 1.0 2.0 0.371702 0.428410 0.756338 1.754821 2.438598 3.1978419
0.5 0.5 2.0 0.5 1.248766 3.631016 15.00114 78.75589 1.775172 14.724114
0.5 0.5 2.0 2.0 0.225271 0.136348 0.124155 0.148577 2.190991 0.8235115
0.5 2.0 1.0 0.5 4.006446 27.10376 236.9726 2507.292 1.083841 49.493653
0.5 2.0 2.0 2.0 0.473993 0.383384 0.407392 0.531980 1.189489 0.7872935
3.0 1.5 1.0 0.5 4.985129 31.22020 242.6686 2311.769 1.464291 43.219819
1.5 0.5 2.0 1.5 0.535931 0.438362 0.494825 0.729813 1.666026 1.1710862
2.0 2.5 1.5 3.0 0.530031 0.370096 0.323693 0.345280 1.240077 0.5167241
2.0 0.5 0.5 1.0 1.409837 3.076611 9.717392 41.62731 2.03217 10.713407

3. Estimation

Point estimation is the first step of statistical inference on the unknown parameters of
the underlying population. In order to find point estimations, there are different methods
such as maximum likelihood estimation (MLE), least square and moment method. In the
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present paper, we obtain the maximum likelihood, least square and weighted least-square
estimations for the parameters of the EOLL-L distribution.

3.1. Maximum likelihood estimation

Let Xj,...,X, be a random sample of size n from the EOLL-L(a, 8,7, 1) distribution.
The log-likelihood function for the vector of parameters 8 = (o, 8,7, A)7 can be written as
,yl n n n
1(8) = nlog (1+l> + Y log(14x;)+(B—1)) log(1+ —BAY x;
i=1 i=1 i=1
n

(1) Y log(g) + Y. loglat (B — c)g) ~2 ) log [4f + (1 4] 24
i=1 i=1 i=1

2

where g; = 1 — (1 + 1+L;L)c,-)e_l"i is a transformed observation. The log-likelihood can be
maximized by differentiating (24) and solving the nonlinear likelihood equations. The com-
ponents of the score vector U () are given by

2n n 1
GO = 71 ﬁZx, ,; L+ A)( 1+/l+/lx,)
n ql n (l)
+ (a—1)Y F—+
( )l-; qgi ,Z%OH‘ (B—a)gi
n aag® 1 _ 1— iﬁ71
722%( q; _ Yﬁ( Qﬁ) ,
= -+?’(1—61i)
o log Ql)
Ug(B) = log(qi) +
«() Z el Za+ gi lzqu‘ﬂflfql)ﬁ
o I_Qlﬁ
Uy,(0) =
70) ,Ziq?“r?’l—q,)ﬁ

7Lxl

lel

s " (1—g;)Plog(1—g;)
i 7—2 .
Y B owa ; g+ (1 —q)P

To construct a confidence interval and find test statistic for testing hypothesis on the
parameters, the 4 x 4 observed information matrix J = J(0) is required.

Under conditions that are fulfilled for parameters in the interior of the parameter space
but not on the boundary, the asymptotic distribution of /(6 — 8) is N4(0,1(68)~"), where
1(0) is the expected information matrix. In practice, we can replace /() by the observed
information matrix evaluated at 6 (say J (é)) We can construct approximate confidence in-
tervals and confidence regions for the individual parameters and for the hazard and survival
functions based on the multivariate normal N4 (0,.J(6)~") distribution.
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3.2. Ordinary and weighted least-square estimators

Let x(1), X(2), X(3);*** , X(») denote the ordered sample of the random observations of size
n from the EOLL-L distribution. By minimizing the following equation
a 2
n [1 - (1 + 1%%-)) e%x(”} i

i=1 [1—(1+H%x(,-))e‘“<i>r+}/{(l+,%lx(,-))e—/lx<i)}ﬁ_”+1 » (29)

the least-square estimations (LSEs) of the EOLL-L distribution can be computed. Moreover,
the weighted least square estimators (WLSEs) of the EOLL-L distribution can be derived
by minimizing the following equation
2
A ~Axy ¢
Z(e)_i(n+l)2(n+2) [“(“rmxw)e “} B
A i) A ] ® A ] ontl
: [“(”m%’))e “] +7[(1+1+ﬂ<i>)€ “}
(26)
One can use the optim function in R software to minimize the (25) and (26). The partial
derivatives of (25) and (26) with respect to &, 8, ¥ and A can be obtained from the authors
upon request.

4. Simulation

In this section, a simulation study on the model parameters is investigated. The MLE,
LSE, and WLSE methods are used for estimating the unknown parameters of the EOLL-L
distribution and the performance of the methods are compared. The simulation procedure
has been performed according to the following steps:

1. Set the sample size n and the vector of parameters 6 = (¢, 8,7, 1).

2. Generate random observations from the EOLL — L(a, 3,7, ) distribution with size
n using Algorithm 1 in subsection 2.2.

3. Apply the generated random observations in Step 2 and estimate 6 by means of MLE,
LSE and WLSE methods.

4. Repeat Steps 2 and 3 for N times.

5. Compute the mean relative estimates (MREs) and mean square errors (MSEs) using
6 and 6 on the basis of the following equations:

(6,-6)°

)

MRE =

0u/0  MsE— 3
N =t

™=

J

where é@ jfori=1,.,4and j=1,...,N, is the estimation of ith element of parameter
vector in jth iteration. The simulation results are obtained with R software. The chosen pa-
rameters of the simulation study are 6 = (¢ = 0.5, =2,y=1.5,14 =2.5), N = 1000 and
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n = (50,55,60,...,500). We expect that MREs are closer to one when the MSEs are near
zero. Figure 2 represents estimated MSEs and MREs based on the MLE, LSE and WLSE
methods. As expected, MSEs and MREs of all estimates tend to zero and one for large n,
respectively. Furthermore, it is deduced generally that the LSE method has better perfor-
mance than the MLE method as well as the WLSE method to estimate EOLL-L parameters
based on both MSE and MRE criteria even for the small sample size.

4% — LSE -0 — LSE

S ME

MSE
MSE
MSE

000 005 010 015
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Figure 2. The behavior of MSEs and MREs of MLE, LSE and WLSE methods for different
values of sample size.

5. Applications

In this section, we illustrate the fitting performance of the EOLL-L distribution us-
ing a real data sets. To evaluate the performance of the EOLL-L distribution, we re-
call a few extended of Lindley distribution such as: Power Lindley distribution, PL(3,1)
(Ghitany et al. (2013)), Generalized Lindley, GL(a,A), (Nadarajah et al. (2011)), Beta
Lindley, BL(,3,A), (Merovci and Sharma (2014)), Exponentiated power Lindley dis-
tribution, EPL(ct,3,A), (Ashour and Eltehiwy (2015)), Odd log-logistic power Lindley
distribution, OLL — PL(¢t, 3, 1), (Alizadeh et al. (2017a)), Kumaraswamy Power Lind-
ley, Kw(e,B,7,A), (Oluyede et al. (2016)), Odd Burr- Lindley, OBu — L(at,3,A) (Al-
tun et al. (2017)), Extended generalized Lindley, EGL(a,7y,A), (Ranjbar et al. (2019)),
Marshal-Olkin Lindley, MOL(7y,A), (Marshall and Olkin (1997)), New odd-log logistic
Lindley, NOLLL(x, B, 1), (Alizadeh et al. (2018b)), Odd-log logistic Marshal-Olkin Lind-
ley, OLL— MOL(a,7, 1), (Alizadeh et al. (2017b)).

To compare the EOLL-L distribution with the above-mentioned distributions we con-
sider several well-known criteria such as Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Cramer Von Mises (W*) and Anderson-Darling (A*) statistics.
In addition, Kolmogorov-Smirnov (K-S) statistic with its corresponding p-value and mini-
mum value of minus log-likelihood function (-Log(L)) are investigated for all distributions.
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Furthermore, the likelihood ratio (LR) tests apply for evaluating the EOLL-L distribution
with its sub-models. For example, the test of Hy : B = 1 against H; : § # 1 is equivalent to
comparing the EOLL-L with EGL, and the LR test statistic is given by

LR=2|1(6,,B,7,A) — 1(a*,1,7*,A%)|,

where o*, 7* and X* are the ML estimators under Hy of a,y and A, respectively. It should
be highlighted that the initial values of the parameters are quite important to obtain the cor-
rect MLEs of parameters. To avoid the local minima problem, we first obtain the parameter
estimation of the Lindley distribution. Then, the estimated parameter of the Lindley dis-
tribution is used as the initial value of the parameter in all the mentioned extended of the
Lindley distribution as well as the EOLL-L distribution. This approach is quite useful to
obtain correct parameter estimates of extended distributions.

The data are the exceedances of flood peaks (in m3 /s) of the Wheaton River near Car-
cross in Yukon Territory, Canada. The data consist of 72 exceedances for the years 1958-
1984 rounded to one decimal place. These data were analyzed by Akinsete et al. (2008).
Throughout this subsection, we present the obtained results using the exceedances of the
flood peaks data set.

Table 2. The exceedances of flood peaks data set

13.0
1.70
0.60
5.60
2.50

12.0
37.6
9.00
30.8
274

9.30
0.60
1.70
13.3
1.00

1.40
2.20
7.00
420
27.1

1.70
18.7
39.0
20.1
25.5
20.2

2.20
8.50
0.30
0.40
3.40
16.8

144
255
15.0
2.80
11.9
5.30

1.10
11.6
11.0
14.1
21.5
9.70

0.40
14.1
7.30
9.90
27.6
275

20.6
22.1
229
104
36.4
2.50

5.30
1.10
1.70
10.7
2.70
27.0

0.70
2.50
0.10
30.0
64.0

1.90
144
1.10
3.60
1.50

The ML estimates and the goodness-of-fit test statistics are presented in Tables 3 and
4, respectively. From Table 4, the smallest values of AIC, A*,W* and —/ statistics and the
largest p-value belong to the EOLL-L distribution. Although, the BIC of OLLPL is less
than that of EOLLL, in general, the EOLL-L distribution outperforms the other competitive
considered distributions on the basis of the criteria. The values of LR test statistics and

Table 3. The ML estimates and their standard errors (in parentheses) for first data set

Model o B Y A

Lindley(4) - - - 0.153 (0.0128)
GL(a,A) 0.508 (0.0767) - - 0.104 (0.01491)
PL(B,1) - 0.700 (0.0570) - 0.338 (0.0559)
BL(c,3,1) 0.555 (0.0983) | 0.274 (0.2397) - 0.333 (0.2723)
EPL(a,8,1) 0.730 (0.2351) | 0.915 (0.5956) - 0.300 (0.2791)
OLLPL(c,f,1) 0.183 (0.0222) - - 0.612 (0.0660)
KwL(a,B,7,1) 1.675 (2.4335) | 0.453 (0.4323) | 7.563 (11.7366) | 0.279 (0.5225)
OBuL(a,f3,A) 24.91 (25.654) | 0.024 (0.0326) - 0.984 (0.1496)
EGL(a,v,4) 0.618 (0.1018) - 2.770 (1.7047) 0.169 (0.0288)
MOL(y,4) - - 0.215 (0.1276) 0.090 (0.0246)
NOLLL(c,B,A) 1.1735(0.1917) - 0.171 (0.0238) 0.547 (0.0262)
OLLMOL(a,y,A) | 0.6165(0.0880) - 0.965 (0.4366) 0.180 (0.0470)
EOLLL(ce,B,y,A) | 1.113(0.2132) | 1.775(0.4509) | 0.176 (0.0244) 0.618 (0.0026)
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Table 4. Goodness-of-fit test statistics for the data set

Model AIC BIC p-value w* A* —1
Lindley(l) 530.423 532.700 0.001 0.139 0.852 264.211
GL(a,A) 509.349 513.902 0.276 0.132 0.822 252.674
PL(B,A) 508.443 512.996 0.405 0.123 0.766 252.103
BL(,f,4) 510.206 517.036 0.297 0.150 0.866 252.221
EPL(a,f3,1) 510.425 517.255 0.395 0.147 0.854 252212
OLLPL(a,f3,1) 506.029 510.582 0.501 0.100 0.621 251.015
KwL(e,3,7,1) 512.221 521.328 0.371 0.152 0.866 252.110
OBuL(a, f3,1) 511.212 520.319 0.401 0.140 0.799 251.606
EGL(,7,4) 508.931 515.761 0.174 0.101 0.662 251.465
MOL(y,1) 522.570 527.124 0.024 0.214 1.208 259.285
NOLLL(a B,A) 506.505 513.335 0.035 0.095 0.517 250.252
OLLMOL(a,7,A) 508.023 514.853 0.517 0.101 0.623 251.011
EOLLL(c,f,7,A) 502.327 511.433 0.958 0.041 0.249 247.163

Table 5. The LR test results for the data set

Hypotheses LR p-value
EOLL-L versus Lindley Hy:o=p= 34.0966 < 0.0001
EOLL-L versus OLL-L Hy: o=, y: 1 7.7022 0.0212
EOLL-L versus MOL Hy:ao=p=1 24.2439 < 0.0001
EOLL-L versus NOLLL Hy:y=1 6.1782 0.01293
EOLL-L versus OLL-MOL Hy:oa=p 7.6962 0.00553

their corresponding p-values are exhibited in Table 5. From Table 5, we observe that the
computed p-values are too small so we reject all the null hypotheses and conclude that
the EOLL-L fits the data set better than the considered sub-models according to the LR
criterion.

We also plotted the fitted pdfs, cdfs and P-P plots of the considered models for the sake
of visual comparison, in Figures 4 and 5, respectively. Figure 4 suggests that the EOLL-
L fits the skewed data very well. Figures 5 shows that the plotted points for the EOLL-L
distribution best capture the diagonal line in the probability plots. Therefore, the EOLL-L
distribution can be considered as an appropriate model for fitting the first data set.

6. Bayesian estimation

The Bayesian inference procedure has been taken into consideration by many statistical
researchers, especially researchers in the field of survival analysis and reliability engineer-
ing. In this section, a complete sample data is analysed through the Bayesian point of view.
We assume that the parameters o, 3, Y and A of the EOLL — L distribution have independent
prior distributions as

o ~ Gamma(a,b),y ~ Gamma(c,d),A ~ Gammal(e, f), ~ Gamma(g,h)
where a,b,c,d,e, f, g and h are positive. Hence, the joint prior density function is formulated
as follows:
bad(‘f@hg

_ a—1ph—1,c—19 e—1_—(bo+hB-+dy+fA)
n(a,B,7,4) = NOCRBROR B lyaele . @D




14 A. Eftekharian et al.: An extended odd log-logistic-lindley distribution...

0.10
!
[
g
g

0.10
)
5
z

008
L

densiy
006
.

004
L

002
L

Figure 3. Fitted pdfs and cdfs of the distributions for the data set

In the Bayesian estimation, according to which we do not know the actual value of the
parameter, we may be adversely affected by loss when we choose an estimator. This loss
can be measured by a function of the parameter and the corresponding estimator.

Five well-known loss functions and associated Bayesian estimators and corresponding
posterior risks are presented in Table 6. For more details, the reader can refer to Calabria
and Pulcini (1996). Next, we provide the posterior probability distributions for a complete

Table 6. Bayes estimator and posterior risk under different loss functions

Loss function Bayes estimator Posterior risk
Ly =SELF = (6 —d)? E(6]x) Var(8|x)
Ly = WSELF = 052° (E(6~'x))~"! E(6]x) — (E(6~"|x))~!
2 —1 —1[,)2

_ - d E(0~']x) E(6~']x)
Ls = MSELF = (1- §) GO D)
Ly = PLF = = VE(67R) 2 ( E(67) —E(e|x))
Ls = KLF — ( 4_ g) bl 2( E(BRE® ) — 1)

data set. Let us we define the function ¢ as
o, B, 1, A) = o By g e et [ 5 0, B> 0, 7> 0, 2 >0,

The joint posterior distribution in terms of a given likelihood function L(data) and joint
prior distribution w(a, B, y,A) is defined as

" (o, B, 7, A|data) = n(ct, By, A)L(data). (28)
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Table 7. Bayesian estimates 6 and their posterior risks r5 of the parameters under different
loss functions based on the flood peaks data.

Data Flood peaks

Bayesian estimation

Loss function @ (rz) B (rp) 7(r7) A ()
SELF 1.5331 (0.0863) 0.1852 (0.0012) 1.3004 (0.0386) 0.5993 (0.0076)
WSELF 1.4771 (0.0561) 0.1791 (0.0061) 1.2702 (0.0302) 0.5858 (0.0135)
MSELF 1.4217 (0.0375) 0.1735 (0.0312) 1.2396 (0.0241) 0.6056 (0.0247)
PLF 1.5610 (0.0557) 0.1886 (0.0067) 1.3152 (0.0295) 0.6056 (0.0126)
KLF 1.5049 (0.0376) 0.1821 (0.0338) 1.2852 (0.0236) 0.5925 (0.0229)

Table 8. Credible and HPD intervals of the parameters o, 3, v and A for the flood peaks.

Credible interval

HPD interval

>R ™R

(1.329, 1.737)
(1.161, 1.429)
(0.160, 0.205)
(0.542, 0.662)

(0.957, 2.068)
(0.949, 1.703)
(0.124, 0.254)
(0.428, 0.760)

Hence, we get joint posterior density of parameters ¢, 8, v and A for complete sample
data by combining the likelihood function and joint prior density (27). Therefore, the joint
posterior density function is given by

n*(avﬁv’}/vlu) = K(P((X,B,'}/,)L)L(&é) (29)

o—

YAR(1+x)e PR [1— (14 {5 )e ] ' {a+B-o)[1-(1+{&)e?n]}

=l (A {[1 =+ Expes] "y [(1 - (14 Axpe-rae] }2

(30)

and K is given as
k= [ [ etaBraLg)dadpayds.
o Jo Jo Jo

It is clear from equation (29) that there is no closed form for the Bayesian estimators
under the five loss functions described in Table 6, so we suggest using an MCMC procedure
based on 10000 replicates to compute Bayesian estimators. The corresponding Bayesian
point and interval estimation and posterior risk are provided in Tables 7 and 8 for the flood
peaks data set. Table 8 provides 95% credible and HPD intervals for each parameter of
the EOLL — L distribution. The posterior samples are extracted using Gibbs sampling tech-
nique. Moreover, we provide the posterior summary plots in Figure 4. These plots confirm
that the convergence of Gibbs sampling process occurred.
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Figure 4. Plots of Bayesian analysis and performance of Gibbs sampling for the flood peaks
data set.

7. Conclusion

In this paper, a new distribution which is called extended odd log-logistic-Lindley
(EOLL-L) distribution was introduced. The statistical properties of the EOLL-L distri-
bution including the hazard function, quantile function, moments, incomplete moments and
generating functions and maximum likelihood estimation for the model parameters were
given. Simulation studies were conducted to examine the performance of this distribution.
We also presented applications of this new distribution for two real-life data sets in order
to illustrate the usefulness of the distribution. Finally, the Bayesian estimation and Gibbs
sampling procedure for the considered data sets were discussed.
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